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1. Introduction

In a series of recent papers [1], Bagger and Lambert (BL) have constructed a three-

dimensional, interacting superconformal gauge theory of multiple M2-branes. The action is

maximally supersymmetric with 16 ordinary supersymmetries, and it has been verified that

the theory is indeed superconformal with 16 conformal supercharges in [2]. In the quest for

the final form of the theory, as usual, it was supersymmetry that provided crucial guiding

lights. The work was initiated as an attempt to incorporate Basu and Harvey’s generalized

Nahm equation -which was a proposal to describe M2-branes ending on an M5-brane [3]- in

the full supersymmetric M2-brane action. Their analysis revealed a novel algebraic struc-

ture, namely the 3-algebra, which is also investigated independently by Gustavsson [4].

Since the discovery, the multiple M2-brane theory of Bagger and Lambert has attracted

an enormous degree of attention [5 – 35]. One might expect that, given this genuine super-

conformal field theory, M-theory is now about to unveil its mysterious and fundamental

features.

In the present paper, we set out to classify the BPS states, or the BPS equations of the

BL theory using a group theoretical consideration. Apparently the theory of our interest

has the Lorentz group SO(1, 2) and the R-symmetry group SO(8). Instead of providing the

full and thorough survey of possible BPS equations, we focus mainly on two different types

of BPS equations with different number of supersymmetries, and classify them completely.

The first class is completely Lorentz invariant, and the other is invariant under the spatial

rotation.

In the first type, the BPS equations are given purely in terms of the three-algebra

commutators and independent of the three-dimensional worldvolume coordinates. Thus

the corresponding nontrivial configurations possess infinite energy, typically corresponding

to BPS objects of infinite size. Previously known analogous algebraic soultions include the

longitudinal M5-brane in M-theory matrix model which is realized in terms of Heisenberg

algebra or large N matrices [36].

In the other type the equations are SO(2) rotation invariant, and the fields can be

time-dependent. A technical reason why we focus on the two classes is that in these cases,

fully utilizing the SO(8) triality we are able to classify the BPS equations completely.

In addition to the two classes, there is another possibility to obtain third type of BPS

equations via simple tensor product. Namely one can obtain various generalizations of

the Nahm equations which are invariant under the boost SO(1, 1) ⊂ SO(1, 2). Our BPS

equations manifest the division algebra structures: octonion, quarternion or complex. In

the paper we will mainly focus on the BPS equations themselves. Our results hold for

both the finite and infinite dimensional three-algebras. Note however that the Lorentz

– 2 –



J
H
E
P
0
7
(
2
0
0
8
)
0
5
6

invariant BPS equations can have nontrivial solutions only for infinite dimensional three-

algebras. The specific solutions and the physical interpretation will be presented in a

separate publication [37].

The organization of the present paper is as follows. Section 2 is for preliminaries. We

first discuss the general features of the ‘supersymmetric projection matrices’ and review

how to derive the corresponding BPS equations for a given projection matrix. We also

explain the relevant symmetries. Then we classify the projection matrices for the SO(1, 2),

SO(2) and SO(1, 1) invariant equations. Section 3 contains our main results of the BPS

equations. Section 3.1 classifies the SO(1, 2) invariant BPS equations preserving two, four,

six, eight, ten and twelve supersymmetries.1 Section 3.2 classifies the SO(2) invariant BPS

equations preserving two, four, six and eight supersymmetries. In section 3.3 we discuss the

SO(1, 1) invariant BPS equations which generalize the Nahm equations. The final section,

section 4 contains our results and discussions. In appendix we review the SO(8) triality

and its relation to octonions.

Note added. While this paper is being finished, ref. [38] appears in ArXiv which

partially overlaps with our work, as it discusses the BPS equations of the form: DyXI =
1
3!CIJKL[XJ ,XK ,XL]. In the present paper, we explicitly spell the coefficients CIJKL and

classify various BPS equations.

2. Preliminaries

The multiple M2-brane theory has 8 real scalar fields XI , I = 1, 2, . . . , 8 and a 16 component

Majorana spinor Ψ. The supersymmetry transformation of the fermions in the Bagger-

Lambert theory assumes the form:

δΨ =

(

FµIΓ
µI − 1

6
FIJKΓIJK

)

ε , (2.1)

where all the variables are three-algebra valued and we set

FµI ≡ DµXI , FIJK ≡ [XI ,XJ ,XK ] . (2.2)

The bracket [XI ,XJ ,XK ] denotes the three-algebra product which is trilinear and totally

antisymmetric. Note also that in contrast to the original convention [1] we let I = 1, 2, . . . , 8

and take µ ≡ 0, 9, 10 directions as for the M2-brane worldvolume for convenience to present

the BPS equations later,

x0≡ t , x9≡ x , x10≡ y . (2.3)

The supersymmetry parameter is real and subject to the SO(1, 2) projection condition:

Γtxyε = ε , (2.4)

1Note that in the present paper we focus on the sixteen ordinary supersymmetries and not the sixteen

conformal supersymmetries. For the BPS equations preserving conformal supersymmetries in super Yang-

Mills we refer the readers to ref. [39].
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which is consistent with the opposite projection property, ΓtxyΨ = −Ψ. Since the prod-

uct of all the eleven-dimensional gamma matrices leads to the 32 × 32 identity matrix

Γtxy123···8 = 1, the above SO(1, 2) projection condition coincides with the chirality condi-

tion of SO(8),

Γ123···8ε = ε . (2.5)

2.1 Supersymmetry projection matrix - general

In general for supersymmetric theories, the supersymmetry projection matrix Ω can

be defined in terms of the commuting, real, orthonormal supersymmetry parameters

ε1, ε2, . . . , εN ,

Ω :=
N
∑

i=1

εiε
†
i , ε†iεj = δij , (2.6)

satisfying Ω† = Ω2 = Ω. Here N denotes the number of the preserved supersymmetries,

N = TrΩ . (2.7)

Naturally the eigenvalues of the projection matrices are either zero or one.

When the supersymmetry transformation of fermions takes the form δΨ = Fε where

F denotes a bosonic quantity contracted with gamma matrices as in (2.1), the general

strategy to obtain the BPS equations is as follows [40]:

1. Expand the projection matrix Ω in terms of the gamma matrix product basis.

2. Perform the matrix product FΩ and reexpress it in terms of the gamma matrix product

basis.

3. Read off the BPS equations from the coefficients of the linearly independent terms.

For example in the Euclidean four-dimensional minimal super Yang-Mills theory, we have

two choices for the projection matrix Ω = 1
2(1 ± γ1234), while F = Fijγ

ij . Consequently,

noting γ12Ω = ∓γ34Ω etc., we get Fijγ
ijΩ = 2(F ∓ ⋆F )i4γ

i4Ω such that the corresponding

BPS equations are the well-known self-dual or anti-self-dual equations F = ±⋆F . In

this way, the complete classifications of the BPS equations in six and eight-dimensional

super Yang-Mills as well as the pp-wave M-theory matrix model [41] have been carried

out [40, 42, 43].

The present paper concerns the BPS equations of the Bagger-Lambert theory. Since the

eleven-dimensional spacetime admits Majorana spinors we can set all the gamma matrices

and the spinors to be real. In particular, the spatial gamma matrices are symmetric

while the temporal gamma matrix is anti-symmetric. Consequently, also from (2.5), the

projection matrices of the Bagger-Lambert theory must satisfy

Ω = ΩT = Ω∗ , Ω = Ω2 , Ω = PΩ = ΩP , (2.8)

where P is the SO(8) chiral projection matrix,

P :=
1

2
(1 + Γ123···8) . (2.9)
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The most general form of such projection matrices reads

Ω =
[

c + Υ4 + Γx(c′ + Υ′
4) + Γy(c′′ + Υ′′

4) + ΓxyΥ2

]

P , (2.10)

where c, c′, c′′ are constants, Υ4,Υ
′
4,Υ

′′
4 are foursome productions of the SO(8) gamma

matrices ΓIJKL contracted with self-dual four-forms, and Υ2 is a twosome production of

the SO(8) gamma matrices ΓIJ contracted with a two-form. All together, a priori, there

are 3 + 3 × 1
2

(

8

4

)

+
(

8

2

)

= 136 real parameters which must be determined by requiring the

remaining condition Ω2 = Ω. The symmetry group SO(1, 2)×SO(8) in the Bagger-Lambert

theory may reduce the number of the free parameters, but is not big enough to transform

all the free parameters, the two-form and the four-forms, into ‘canonical’ forms. Note that

the SO(8) rotation may take only one of {Υ4,Υ
′
4,Υ

′′
4 ,Υ2} into a canonical form. In our

choice, the canonical form of a two-form reads

Υ2 = a1Γ
12 + a2Γ

34 + a3Γ
56 + a4Γ

78 , (2.11)

while the canonical form of a self-dual four-form reads

Υ4 = b1E1 + b2E2 + b3E3 + b4E4 + b5E5 + b6E6 + b7E7 , (2.12)

where we set

E1 = Γ8127P , E2 = Γ8163P , E3 = Γ8246P , E4 = Γ8347P ,

E5 = Γ8567P , E6 = Γ8253P , E7 = Γ8154P . (2.13)

The former is well known, while the latter is less familiar and we review it in appendix A.

In (2.13) the subscript spatial indices of the gamma matrices are organized such that

the three indices after the common 8 are identical to those of the totally anti-symmetric

octonionic structure constants [40, 44]:

eiej = −δij + cijk ek , i, j, k = 1, 2, . . . , 7 ,

1 = c127 = c163 = c246 = c347 = c567 = c253 = c154 , others zero . (2.14)

We say Ω is invariant under SO(2) rotation invariant on xy-plane if [Γxy , Ω] = 0.

When this holds, for a finite angle φ and rotation G = eφΓxy , from the equivalence

FΩ = 0 ⇐⇒ GFΩG−1 = GFG−1Ω = 0 , (2.15)

we note that the corresponding BPS equations are, as a set, invariant under the rotation.

Naturally this generalizes to an arbitrary subgroup of SO(1, 2)× SO(8).

In the present paper instead of attempting to solve for the most general projection

matrices, we restrict to the cases where Ω assumes the canonical form. Namely we focus on

two types of the BPS equations and classify the corresponding BPS equations completely:

one is the SO(1, 2) invariant cases i.e.

Ω = (c + Υ4)P , (2.16)
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and the other is the SO(2)5 ≡ SO(2)× SO(2)× SO(2)× SO(2)× SO(2) invariant cases i.e.

Ω =
(

constant + twosome products of
{

Γxy,Γ12,Γ34,Γ56,Γ78
})

P . (2.17)

Here SO(1, 2) and SO(2) correspond to the M2 worldvolume Lorenz symmetry and the Car-

tan subgroup of the symmetry group SO(1, 2)×SO(8) respectively. In addition, the former

will easily generate various M-theoretic generalizations of the Nahm equations which are in-

variant under SO(1, 1) ⊂ SO(1, 2), as the corresponding projection matrices are of the form:

Ω = (1 ± Γtx) (c + Υ4)P . (2.18)

2.2 SO(1, 2) invariant projection matrices

The basic building blocks of all the possible SO(1, 2) invariant projection matrices are the

following N = 2 projection matrices [40]:

Ω =
1

8
(P + α1α2E1 + α1α3E2 + α3E3 + α2E4 + α1E5 + α1α2α3E6 + α2α3E7) , (2.19)

where α1, α2, α3 are three independent signs,

α2
1 = α2

2 = α2
3 = 1 . (2.20)

Three independent sign choices lead to eight possible combinations, hence eight N = 2

projection matrices. They are orthogonal to each other and complete, as summing all of

them gives an identity. Namely they form an orthogonal basis for the SO(1, 2) invariant

projection matrices. General N = 2k projection matrices can be straightforwardly obtained

as a k sum of the above eight N = 2 projection matrices. Furthermore, from the SO(8)

triality, the 8!/[k!(8−k)!] possibilities for the k sum are all equivalent to each other. The

corresponding N= 2k BPS equations are SO(1, 2)× SO(8−k)× SO(k) invariant.

2.3 SO(2) invariant projection matrices

The basic building blocks of all the possible SO(2) invariant projection matrices are the

following N = 2 projection matrices (see appendix B for derivation):

Ω =
1

8

[

1+Γxy
(

β1Γ
12+β2Γ

34+β3Γ
56+β1β2β3Γ

78
)

−β1β2Γ
1234−β3β1Γ

1256−β2β3Γ
1278

]

P

=
1

8
(1+β1Γ

xy12)(1+β2Γ
xy34)(1+β3Γ

xy56)P , (2.21)

where β1, β2, β3 denote three independent signs,

β2
1 = β2

2 = β2
3 = 1 . (2.22)

Eight possible N = 2 projection matrices form an orthogonal basis for the SO(2) invariant

projection matrices. General N = 2k projection matrices can be straightforwardly obtained

as a k sum of the above eight N = 2 projection matrices. However, if the sum contains

a pair of two opposite overall sign factors e.g. (+++) and (−−−), the corresponding BPS

configurations become SO(1, 2) invariant as FµI = 0 and the BPS equations reduce to

those of SO(1, 2) invariant BPS equations. Excluding these cases, up to SO(8) rotations,

there are five inequivalent SO(2) invariant projection matrices as follows.
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• N = 2 SO(2)× SU(4) invariant projection matrix, with the choice of (β1,β2,β3) = (+++),

Ω =
1

8

[

1 + Γxy
(

Γ12 + Γ34 + Γ56 + Γ78
)

− Γ1234 − Γ1256 − Γ1278
]

P . (2.23)

• N = 4 SO(2)× SU(2)× SO(4) invariant projection matrix, with (+++),(++−),

Ω =
1

4

[

1 + Γxy
(

Γ12 + Γ34
)

− Γ1234
]

P . (2.24)

• N = 6 SO(2)× SO(2)× SU(3) invariant projection matrix, with (+++),(++−),(+−+),

Ω =
1

8

[

3 + Γxy
(

3Γ12 + Γ34 + Γ56 − Γ78
)

− Γ1234 − Γ1256 + Γ1278
]

P . (2.25)

• N = 8 SO(2)× SO(2)× SO(6) invariant projection matrix, with

(+++),(++−),(+−+),(+−−),

Ω =
1

2
(1 + Γxy12)P . (2.26)

• N = 8 SO(2)× SU(4) invariant projection matrix, with (+++),(++−),(+−+),(−++),

Ω =
1

4

[

2 + Γxy
(

Γ12 + Γ34 + Γ56 − Γ78
)]

P . (2.27)

2.4 SO(1, 1) invariant projection matrices

For SO(1, 1) invariant projection matrices, we have the following N = 1 projection matrices:

Ω=
1

16

(

1+α0Γ
tx
)

(P+α1α2E1+α1α3E2+α3E3+α2E4+α1E5+α1α2α3E6+α2α3E7) , (2.28)

where α0, α1, α2, α3 are four independent signs,

α2
0 = α2

1 = α2
2 = α2

3 = 1 . (2.29)

Sixteen possible N = 1 projection matrices form an orthogonal basis for the SO(1, 1)

invariant projection matrices. Generic N = k SO(1, 1) invariant projection matrices may

be obtained straightforwardly as a k sum of the above sixteen N = 1 projection matrices.

For each sum, we may decompose

N = N+ + N− , N+ = n+ + n , N− = n− + n , (2.30)

such that N± denotes the number of N = 1 projection matrices in the sum whose α0

values are ±1, and n counts the number of N = 1 projection matrix pairs which have the

same α1, α2, α3 values and opposite α0 signs. There are 8!/[n+!n−!n!(8−n+−n−−n)!]

possibilities for the sum which are all equivalent to another, thanks to the SO(8) triality.

Furthermore, if n is nontrivial n 6= 0, then the BPS configurations become SO(1, 2)

invariant as FµI = 0 and the number of the preserved supersymmetries is automatically

increased from n+ + n− + 2n to 2(n+ + n− + n). In this case the BPS equations

reduce to those of SO(1, 2) invariant BPS equations. Genuinely SO(1, 1) invariant BPS

equations appear only when n = 0. The corresponding (N+, N−) BPS equations are

then SO(1, 1)× SO(N+)× SO(N−)× SO(8−N+−N−) invariant with the natural restriction

N++N− ≤ 8.
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3. Classification of the BPS equations

3.1 SO(1, 2) invariant BPS equations

The generic N = 2 SO(1, 2) invariant projection matrix (2.19) leads to the following

N= 2 SO(1, 2)× SO(7) invariant BPS equations which involve three free sign factors

α2
1 = α2

2 = α2
3 = 1:

FµI = 0 , µ = t, x, y , I = 1, 2, . . . , 8 , (3.1)

and

α1α2F278+α2α3F548+α3α1F638+α1F234+α2F256+α3F357+α1α2α3F476 = 0 ,

α1α2F718+α2α3F376+α3α1F475+α1F143+α2F165+α3F468+α1α2α3F538 = 0 ,

α1α2F456+α2α3F267+α3α1F168+α1F124+α2F478+α3F517+α1α2α3F258 = 0 ,

α1α2F536+α2α3F158+α3α1F257+α1F132+α2F738+α3F628+α1α2α3F167 = 0 ,

α1α2F346+α2α3F418+α3α1F427+α1F678+α2F126+α3F137+α1α2α3F328 = 0 , (3.2)

α1α2F354+α2α3F273+α3α1F318+α1F758+α2F152+α3F248+α1α2α3F174 = 0 ,

α1α2F128+α2α3F236+α3α1F245+α1F568+α2F348+α3F153+α1α2α3F146 = 0 ,

α1α2F127+α2α3F154+α3α1F163+α1F567+α2F347+α3F246+α1α2α3F253 = 0 .

In particular, the SO(1, 2) invariance, the M2-brane worldvolume Lorentz symmetry,

removes any worldvolume dependence, DµXI = 0 for all µ and I.

The above set of BPS equations can be regarded as the master equations since any

N= 2k BPS equations can be obtained by imposing k copies of distinct (α1, α2, α3) choices.

The corresponding N= 2k BPS equations are then SO(1, 2)× SO(8−k)× SO(k) invariant.

We find for N= 14 and N= 16 the corresponding BPS equations are trivial, FµI = FIJK =

0. Other nontrivial cases are as follows.

3.1.1 N = 2 SO(1, 2)× SO(7) invariant BPS equations - octonion

With the choice of (α1, α2, α3) = (+ + +), the N= 2 SO(1, 2)× SO(7) invariant BPS equa-

tions (3.1), (3.3) assume a compact form:

FµI = 0 , CIJKLF JKL = 0 , (3.3)

where CIJKL is a SO(7) invariant four-form in eight dimensions, defined in terms of the

octonionic structure constant (2.14),

Cijk8 ≡ cijk , Cijkl ≡ 1
6ǫpqrijklcpqr where 1 ≤ i, j, k, l ≤ 7 . (3.4)

BPS states preserving N= 2k supersymmetries then satisfy k copies of the N= 2

BPS equations of different α choices. The corresponding N= 2k BPS equations are

SO(1, 2)× SO(k)× SO(8−k) invariant, and involve k different octonionic structures.
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3.1.2 N = 4 SO(1, 2)× SO(6)× SO(2) invariant BPS equations - complex

The N= 4 SO(1, 2)× SO(6)× SO(2) invariant BPS equations are, with FµI= 0,

FIJKJ JK = 0 , FIJK = (1⊗J⊗J + J⊗1⊗J + J⊗J⊗1)IJK
LMNFLMN , (3.5)

where J is a complex structure J 2 = −1, J T = −J and hence SU(4)× SO(2) invariant.

With the specific choice of α’s as (+++),(++−), one gets

1

2
JIJΓIJ = Γ12 + Γ34 + Γ56 + Γ78 . (3.6)

In terms of the corresponding holomorphic, anti-holomorphic coordinates a, ā =

1, 2, 3, 4 and the metric δaā, the above N= 4 SO(1, 2)× SO(6)× SO(2) BPS equations (3.5)

can be rewritten as

Fab
b = Fāb

b = 0 , Fabc = Fāb̄c̄ = 0 . (3.7)

Namely F(1,2), F(2,1) are primitive and F(3,0)= F(0,3)= 0.

We note that summing two N= 2 projection matrices generates one complex struc-

ture. Hence in general, summing k > 2 of N= 2 projection matrices will present
(

k

2

)

number of complex structures to the corresponding SO(1, 2)× SO(8−k)× SO(k) invariant

BPS equations. The 1
2k(k − 1) complex structures form singlets under SO(8−k) and are

in the adjoint representation or k-dimensional two-form representation of SO(k). In fact,

they correspond to the generators of SO(k). Nevertheless, the corresponding 1
2k(k − 1)

number of complex structures are degenerate in the sense that distinct [k+1
2 ] of them are

sufficient to lead to the full N= 2k BPS equations.

3.1.3 N = 6 SO(1, 2)× SO(5)× SO(3) invariant BPS equations - quarternion

The N= 6 SO(1, 2)× SO(5)× SO(3) invariant BPS equations are, with FµI= 0,

FIJKJ JK
p = 0 , p = 1, 2, 3 , (3.8)

where J1,J2,J3 are three distinct complex structures satisfying the quaternion relations:

J 2
1 = J 2

2 = J 2
3 = J1J2J3 = −1 . (3.9)

It is worth to note that the remaining relation of (3.5) i.e. F(3,0)= 0 is fulfilled automatically

for each complex structure.

With the specific choice of α’s as (+++),(++−),(+−+), one gets

1

2
J IJ

1 ΓIJ = Γ12 + Γ34 + Γ56 + Γ78 ,

1

2
J IJ

2 ΓIJ = Γ14 + Γ23 + Γ58 + Γ67 , (3.10)

1

2
J IJ

3 ΓIJ = Γ13 + Γ42 + Γ57 + Γ86 .
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Summing three N= 2 projection matrices generates one quarternion structure. Hence

in general, summing k > 3 of N= 2 projection matrices will present
(

k

3

)

number of quar-

ternion structures to the corresponding SO(1, 2)× SO(8−k)× SO(k) invariant BPS equa-

tions. The
(

k

3

)

quarternion structures are singlets under SO(8−k) and form a k-dimensional

three-form representation of SO(k). Nevertheless, the corresponding 1
6k(k−1)(k−2) num-

ber of quarternion structures are degenerate in the sense that distinct [k+2
3 ] of them are

sufficient to give the full N= 2k BPS equations.

3.1.4 N = 8 SO(1, 2)× SO(4)× SO(4) invariant BPS equations

The N= 8 SO(1, 2)× SO(4)× SO(4) invariant BPS equations are, with FµI= 0,

FIJK +
1

2
FI

LMTJKLM +
1

2
FJ

LMTKILM +
1

2
FK

LMTIJLM = 0 , (3.11)

where TIJKL is a SO(4) × SO(4) invariant self-dual four-form. With the specific choice of

α’s as (+++),(++−),(+−+),(+−−), one gets

1

4!
TIJKLΓIJKL = Γ1234 + Γ5678 . (3.12)

Summing four N= 2 projection matrices generates one self-dual four-form structure.

Hence in general, summing k > 4 of N= 2 projection matrices will present
(

k

4

)

number of

self-dual four-form structures to the corresponding SO(1, 2)× SO(8−k)× SO(k) invariant

BPS equations. The
(

k

4

)

self-dual four-form structures are singlets under SO(8−k) and

form a k-dimensional four-form representation of SO(k). Nevertheless, the corresponding
k!

4!(k−4)! number of self-dual four-forms are degenerate in the sense that distinct [k+3
4 ] of

them are sufficient to give the full N= 2k BPS equations.

3.1.5 N = 10 SO(1, 2)× SO(3)× SO(5) invariant BPS equations

For N= 10 SO(1, 2)× SO(3)× SO(5) case there seems no novel structure to appear. One

economic fashion to write the N = 10 SO(1, 2)× SO(3)× SO(5) invariant BPS equations

is to employ a SO(4) × SO(4) invariant self-dual four-form and a complex structure: with

FµI= 0,2

FIJK + 3
2F[I

LMTJK]LM = 0 , FIJKJ JK = 0 . (3.13)

The specific choice of α’s as (+++),(++−),(+−+),(+−−),(−++) gives

1
4!TIJKLΓIJKL = Γ1234 + Γ5678 , 1

2JIJΓIJ = Γ18 − Γ27 + Γ36 − Γ45 . (3.14)

2Alternatively we can express them in terms of two sets of either SO(4) × SO(4) invariant self-dual

four-forms one given by (3.12) the other by 1
2
(Γ1234+Γ5678+Γ1256+Γ3478+Γ1357+Γ2468+Γ1467+Γ2358) or

quarternionic complex structures one by (3.11) and the other by Γ14+Γ85+Γ76+Γ23, Γ15+Γ48+Γ73+Γ62,

Γ18+Γ54+Γ72+Γ36.
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3.1.6 N = 12 SO(1, 2)× SO(2)× SO(6) invariant BPS equations

The N= 12 SO(1, 2)× SO(2)× SO(6) invariant BPS equations are, with FµI= 0,3

FIJKT JK
p = 0 , p = 1, 2, 3, 4, 5, 6 , (3.15)

where T IJ
p ’s are SO(2)×SO(6) covariant two-forms: fundamental under SO(6) and singlet

under SO(2). With the specific choice of α’s as (+++),(++−),(+−+),(+−−),(−++),(−+−), one

gets

1

2
T IJ

1 ΓIJ = Γ14 + Γ23 ,
1

2
T IJ

2 ΓIJ = Γ67 + Γ58 ,

1

2
T IJ

3 ΓIJ = Γ16 + Γ25 ,
1

2
T IJ

4 ΓIJ = Γ74 + Γ83 , (3.16)

1

2
T IJ

5 ΓIJ = Γ17 + Γ28 ,
1

2
T IJ

6 ΓIJ = Γ35 + Γ46 .

3.2 SO(2) invariant BPS equations

The generic N = 2 projection matrix (2.21) leads to the following N= 2 SO(2)× SU(4)

invariant BPS equations which involve three free sign factors β2
1 = β2

2 = β2
3 = 1:

Fx1 + β1Fy2 = 0 , Fx3 + β2Fy4 = 0 , Fx5 + β3Fy6 = 0 , Fx7 + β1β2β3Fy8 = 0 ,

Fx2 − β1Fy1 = 0 , Fx4 − β2Fy3 = 0 , Fx6 − β3Fy5 = 0 , Fx8 − β1β2β3Fy7 = 0 , (3.17)

and

Ft1+β2F134+β3F156+β1β2β3F178 =0 , F135−β1β2F245−β2β3F146−β3β1F236 =0 ,

Ft2+β2F234+β3F256+β1β2β3F278 =0 , F136−β1β2F246+β2β3F145+β3β1F235 =0 ,

Ft3+β1F312+β3F356+β1β2β3F378 =0 , F137−β1β2F247−β2β3F238−β3β1F148 =0 ,

Ft4+β1F412+β3F456+β1β2β3F478 =0 , F138−β1β2F248+β2β3F237+β3β1F147 =0 , (3.18)

Ft5+β1F512+β2F534+β1β2β3F578 =0 , F157−β1β2F168−β2β3F258−β3β1F267 =0 ,

Ft6+β1F612+β2F634+β1β2β3F678 =0 , F158+β1β2F167+β2β3F257−β3β1F268 =0 ,

Ft7+β1F712+β2F734+β3F756 =0 , F357−β1β2F368−β2β3F467−β3β1F458 =0 ,

Ft8+β1F812+β2F834+β3F856 =0 , F358+β1β2F367−β2β3F468+β3β1F457 =0 .

The above set of BPS equations can be regarded as the master equations since any N= 2k

SO(2)5 invariant BPS equations corresponding to the projection matrices (2.23 - 2.27)

can be obtained by imposing k copies of distinct (β1, β2, β3) choices. We find, among

them, the N = 8 SO(2)× SU(4) invariant projection matrix (2.27) leads to the trivial BPS

configuration FµI = FIJK = 0. Other nontrivial cases are as follows.

3Of course, the above N = 12 BPS equations can be obtained by imposing a pair of two distinct

quarternionic BPS equations (3.8). There are 1
2

„

6

3

«

= 10 such pairs and any of them leads to the same

N = 12 BPS equations. For example we may choose one quarternion structure from (3.11) and the

other by Γ12+Γ87+Γ56+Γ43, Γ17+Γ28+Γ53+Γ64, Γ18+Γ72+Γ54+Γ36, corresponding to the α choices

(+++),(++−),(+−+) and (+−−),(−++),(−+−).
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3.2.1 N = 2 SO(2)× SU(4) invariant BPS equations

The N = 2 SO(2)× SU(4) invariant BPS equations corresponding to the projection ma-

trix (2.23) or the choice (β1, β2, β3) = (+ + +) in (3.17) and (3.18) assume a compact form,

up to Hermitian conjugation:

Fzā = 0 , Fta − iFab
b = 0 , Fabc = 0 , (3.19)

provided we complexify the SO(8) coordinates by the complex structure Γ12+Γ34+Γ56+Γ78,

to introduce the holomorphic and anti-holomorphic variables a, ā = 1, 2, 3, 4 such that the

metric is δaā and

Dz =
1√
2
(Dx − iDy) , Dz̄ =

1√
2
(Dx + iDy) ,

Fza =
1√
2
(DzX2a−1 − iDzX2a) , Fzā =

1√
2
(DzX2ā−1 + iDzX2ā) . (3.20)

3.2.2 N = 4 SO(2)× SU(2)× SO(4) invariant BPS equations

The N = 4 SO(2)× SU(2)× SO(4) invariant BPS equations corresponding to the projection

matrix (2.24) are, up to Hermitian conjugation,

Fzā = 0 , Fzp = 0 , Fpab = 0 , FtI − iFIa
a = 0 , FIpq +

1

2
ǫpqrs FI

rs = 0 , (3.21)

where I = 1, 2, . . . , 8, p, q, r, s = 5, 6, 7, 8, ǫpqrs is a totally anti-symmetric tensor with

ǫ5678= 1 and a, b, ā = 1, 2 such that the SO(4) ⊂ SO(8) coordinates are complexified by

the complex structure Γ12+Γ34.

3.2.3 N = 6 SO(2)× SO(2)× SU(3) invariant BPS equations

The N = 6 SO(2)× SO(2)× SU(3) invariant BPS equations corresponding to the projection

matrix (2.25) are, up to Hermitian conjugation,

Fzω̄ = 0 , Fza = 0 , Fzā = 0 , Ftω − i
1

3
Fωa

a = 0 ,

Fta − iFaωω̄ = 0 , Fωab = 0 , Fabc̄ = 0 , Fωab̄ −
1

3
(Fωc

c)δab̄ = 0 , (3.22)

where a, ā = 1, 2, 3 such that we complexify the SO(6) ⊂ SO(8) coordinates by the complex

structure Γ34+Γ56+Γ87 and also set separately for SO(2) ⊂ SO(8),

Fzω ≡ 1√
2
(Fz1 − iFz2) , Fzω̄ ≡ 1√

2
(Fz1 + iFz2) . (3.23)

3.2.4 N = 8 SO(2)× SO(2)× SO(6) invariant BPS equations

The N = 8 SO(2)× SO(2)× SO(6) invariant BPS equations corresponding to the projection

matrix (2.26) are, up to Hermitian conjugation,

Fzω̄ = 0 , Fzp = 0 , FtI − iFIωω̄ = 0 , FIpq = 0 , (3.24)

where I = 1, 2, . . . , 8, p = 3, 4, 5, 6, 7, 8 and we complexify the SO(2) ⊂ SO(8) coordinates

by the complex structure Γ12 to employ (3.23).
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3.3 SO(1, 1) invariant BPS equations

The generic N = 1 projection matrix (2.28) leads to the following N= 1 SO(1, 1)× SO(7)

invariant BPS equations which involve four free signs α2
0 = α2

1 = α2
2 = α2

3 = 1:

FtI−α0FxI =0 , I =1, 2, . . . , 8 ,

α0Fy1−α1α2F278−α2α3F548−α3α1F638−α1F234−α2F256−α3F357−α1α2α3F476=0 ,

α0Fy2−α1α2F718−α2α3F376−α3α1F475−α1F143−α2F165−α3F468−α1α2α3F538=0 ,

α0Fy3−α1α2F456−α2α3F267−α3α1F168−α1F124−α2F478−α3F517−α1α2α3F258=0 ,

α0Fy4−α1α2F536−α2α3F158−α3α1F257−α1F132−α2F738−α3F628−α1α2α3F167=0 , (3.25)

α0Fy5−α1α2F346−α2α3F418−α3α1F427−α1F678−α2F126−α3F137−α1α2α3F328=0 ,

α0Fy6−α1α2F354−α2α3F273−α3α1F318−α1F758−α2F152−α3F248−α1α2α3F174=0 ,

α0Fy7−α1α2F128−α2α3F236−α3α1F245−α1F568−α2F348−α3F153−α1α2α3F146=0 ,

α0Fy8+α1α2F127+α2α3F154+α3α1F163+α1F567+α2F347+α3F246+α1α2α3F253=0 .

The above set of BPS equations can be regarded as the master equations for generic

SO(1, 1) invariant BPS equations. One can classify the BPS equations according to the

decomposition of the number of preserved supersymmetries as (N+, N−) (2.30). Among

others, below we spell explicitly (N+, 0 ) as well as (N,N) BPS equations with N+ =

1, 2, . . . , 7, N = 1, 2, 3, 4.

3.3.1 (N+, N−) = (1, 0) SO(1, 1)× SO(7) invariant BPS equations - octonion

With the choice of (α0, α1, α2, α3) = (+ + ++), the (N+, N−)= (1, 0) SO(1, 1)× SO(7) in-

variant BPS equations (3.26) assume a compact form:

FtI − FxI = 0 , FyI − 1
6CIJKLF JKL = 0 , (3.26)

which generalizes the N = 2 SO(1, 2)× SO(7) invariant BPS equations (3.3).

3.3.2 (N+, N−) = (2, 0) SO(1, 1)× SO(2)× SO(6) invariant BPS equations - complex

The (N+, N−) = (2, 0) SO(1, 1)× SO(2)× SO(6) invariant BPS equations are, with

FtI−FxI= 0,

J IJFyJ+
1

2
F I

JKJ JK =0 , FIJK = (1⊗J⊗J+J⊗1⊗J+J⊗J⊗1)IJK
LMNFLMN , (3.27)

which generalizes the N = 4 SO(1, 2)× SO(6)× SO(2) invariant BPS equations (3.5).

3.3.3 (N+, N−) = (3, 0) SO(1, 1)× SO(3)× SO(5) invariant BPS equations - quar-

ternion

The (N+, N−) = (3, 0) SO(1, 1)× SO(3)× SO(5) invariant BPS equations are, with

FtI−FxI= 0,

J IJ
p FyJ +

1

2
F I

JKJ JK
p = 0 , p = 1, 2, 3 , (3.28)
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where J1,J2,J3 are three distinct complex structures satisfying the quaternion relations,

J 2
1 = J 2

2 = J 2
3 = J1J2J3 = −1 (3.11). It is worth to note that the remaining rela-

tion of (3.27) F(3,0) = 0 is fulfilled automatically for each complex structure. Eq. (3.28)

generalizes the N = 6 SO(1, 2)× SO(5)× SO(3) invariant BPS equations (3.8).

3.3.4 (N+, N−) = (4, 0) SO(1, 1)× SO(4)× SO(4) invariant BPS equations

The (N+, N−) = (4, 0) SO(1, 1)× SO(4)× SO(4) invariant BPS equations are, with

FtI−FxI= 0,

TIJKLFy
L + FIJK +

1

2
FI

LMTJKLM +
1

2
FJ

LMTKILM +
1

2
FK

LMTIJLM = 0 , (3.29)

where TIJKL is a SO(4)× SO(4) invariant self-dual four-form (3.12). Eq. (3.29) generalizes

the N = 8 SO(1, 2)× SO(4)× SO(4) invariant BPS equations (3.11). Some mass deforma-

tions of the above BPS equations are studied in ref. [23].

3.3.5 (N+, N−) = (5, 0) SO(1, 1)× SO(5)× SO(3) invariant BPS equations

The (N+, N−) = (5, 0) SO(1, 1)× SO(5)× SO(3) invariant BPS equations are, with

FtI−FxI= 0,

TIJKLFy
L + FIJK + 3

2F[I
LMTJK]LM = 0 , J IJFyJ + 1

2FIJKJ JK = 0 , (3.30)

where TIJKL and J IJ are given in (3.14). Eq. (3.30) generalizes the N = 10

SO(1, 2)× SO(3)× SO(5) invariant BPS equations (3.13).

3.3.6 (N+, N−) = (6, 0) SO(1, 1)× SO(6)× SO(2) invariant BPS equations

The (N+, N−) = (6, 0) SO(1, 1)× SO(6)× SO(2) invariant BPS equations are, FtI−FxI= 0,

T IJ
p FyJ +

1

2
F I

JKT JK
p = 0 , p = 1, 2, 3, 4, 5, 6 , (3.31)

where six of two-forms Tp, p = 1, 2, . . . , 6 are given in (3.16). Eq. (3.31) generalizes the

N = 12 SO(1, 2)× SO(2)× SO(6) invariant BPS equations (3.15).

3.3.7 (N+, N−) = (7, 0) SO(1, 1)× SO(7) invariant BPS equations

The (N+, N−) = (7, 0) SO(1, 1)× SO(7) invariant BPS equations are, with FtI−FxI= 0,

T IJ
p FyJ +

1

2
F I

JKT JK
p = 0 , p = 1, 2, 3, 4, 5, 6, 7 . (3.32)

Here we have seven of two-forms, six given by (3.16) and last one by

1

2
T IJ

7 ΓIJ = Γ13 + Γ57 . (3.33)

They form a fundamental representation of SO(7).
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3.3.8 (N+, N−) = (1, 1) SO(1, 1)× SO(6) invariant BPS equations

The (N+, N−) = (1, 1) SO(1, 1)× SO(6) invariant BPS equations are, with FtI = FxI = 0,

best expressed in complex coordinates,

Fab
b = 0 , Fyā − 1

3ǫā
bcdFbcd = 0 . (3.34)

3.3.9 (N+, N−) = (2, 2) SO(1, 1)× SO(2)× SO(2)× SO(4) invariant BPS equations

The (N+, N−) = (2, 2) SO(1, 1)× SO(2)× SO(2)× SO(4) invariant BPS equations are, with

FtI = FxI = 0,

(3J [IJJK]L − T IJKL)FyL + F IJK +
3

2
F [I

LMT JK]LM = 0 , (3.35)

where J IJ is the complex structure of Γ12+Γ34+Γ56+Γ78 (3.6) and T IJKL is the self-dual

SO(4)× SO(4) invariant four-form tensor of Γ1234 + Γ5678 (3.12).

3.3.10 (N+, N−) = (3, 3) SO(1, 1)× SO(3)× SO(3)× SO(2) invariant BPS equations

We present the (N+, N−) = (3, 3) SO(1, 1)× SO(3)× SO(3)× SO(2) invariant BPS equa-

tions with a pair of quarternion structures, one from (3.11) and the other from

Γ12+Γ87+Γ56+Γ43, Γ17+Γ28+Γ53+Γ64, Γ18+Γ72+Γ54+Γ36. With FtI = FxI = 0 they

are

J IJ
p FyJ +

1

2
F I

JKJ JK
p = 0 , Ĵ IJ

p FyJ − 1

2
F I

JK Ĵ JK
p = 0 , p = 1, 2, 3 . (3.36)

3.3.11 (N+, N−) = (4, 4) SO(1, 1)× SO(4)× SO(4) invariant BPS equations

The (N+, N−) = (4, 4) SO(1, 1)× SO(4)× SO(4) invariant BPS equations are, with FtI =

FxI = 0 , in terms of the self-dual × SO(4)× SO(4) invariant four-form tensor,

T IJKLFyL + F IJK = 0 . (3.37)

Especially among all the half BPS cases i.e. N+ + N− = 8, only the case (N+, N−) = (4, 4)

leads to the nontrivial BPS equations.

4. Discussion

In this paper we studied and identified a number of BPS equations for the multiple M2-

brane theory proposed recently by Bagger and Lambert. We employed a method which

had been successfully applied to several analogous problems. One first constructs the basic

projection matrices for the supersymmetry parameters, and then obtain the corresponding

BPS equations. Our classifications are complete for SO(1, 2) as well as SO(2)5 invariant

BPS equations, while may be not for SO(1, 1) invariant cases.

The BPS equations with different types and numbers of preserved supersymmetries are

derived in terms of the associated tensors which are invariant under the symmetry group

of the relevant BPS equations. In particular we derived three types of half BPS equations,

which we recall:
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• N= 8 SO(1, 2)× SO(4)× SO(4) invariant BPS equations (3.11)

FµI = 0 , FIJK +
1

2
FI

LMTJKLM +
1

2
FJ

LMTKILM +
1

2
FK

LMTIJLM = 0 . (4.1)

• N = 8 SO(2)× SO(2)× SO(6) invariant BPS equations (3.24)

Fzω̄ = 0 , Fzp = 0 , FtI − iFIωω̄ = 0 , FIpq = 0 , (4.2)

where I = 1, 2, . . . , 8, p = 3, 4, 5, 6, 7, 8, and ω, ω̄ are complex coordinates for SO(2) ⊂
SO(8).

• (N+, N−) = (4, 4) SO(1, 1)× SO(4)× SO(4) invariant BPS equations (3.37)

FtI = FxI = 0 , T IJKLFyL + F IJK = 0 . (4.3)

The BPS equations for different number of supersymmetries exhibit the division alge-

bra structures: octonion, quarternion or complex. Let us take the Lorentz invariant type

as examples. For the least supersymmetric configurations preserving 1/8 supersymmetries,

the relevant symmetry is SO(1, 2)× SO(7) and the BPS equations can be elegantly written

in terms of the invariant four-form which has close relation to octonions. For 1/4-BPS

equations the symmetry is SO(1, 2)× SO(6)× SO(2) and a complex structure appears. We

next have 3/8 SO(1, 2)× SO(5)× SO(3) invariant BPS equations, which are naturally best

expressed in terms of quarternions or hyper-Kähler structure. In addition, for 1/2-BPS

equations we have the SO(4)×SO(4) invariant self-dual four-form structure. We have also

identified the exotic classes with more than 1/2 supersymmetry. Apparently the governing

symmetries include more than one hyper-Kähler structures, but we have not been able

to express the BPS equations in a succinct way. The true mathematical identity of such

systems certainly deserves more careful study.

The explicit solutions of the BPS equations will give the spectrum of supersymmetric

solitons in Bagger-Lambert theory. It is natural to ask the M-theory interpretation of such

objects. The real scalar fields XI describe the locations of M2-branes in the transverse R
8.

The spatial dependence of XI thus informs us on the shape of M2-branes, or how they are

embedded in the transverse R
8. Eq. (3.17) and the subsequent analysis clearly suggest that

the M2-brane worldvolume should occupy holomorphic curves, which is natural for super-

symmetry. Likewise, time-dependence of the scalar field obviously implies that there is

momentum along the particular direction. The three-algebra terms FIJK describe the truly

M-theoretic phenomena: polarization of multiple M2-branes into M5-branes. Generically

the BPS equations are given as various combinations of such basic building blocks, and

more detailed descriptions with explicit solutions will be reported in a separate publication.
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A. Gamma matrices and octonions

The eleven-dimensional 32×32 gamma matrices ΓM , M = µ, I, µ = t, x, y, I = 1, 2, . . . , 8

in the Bagger-Lambert theory naturally decompose into two parts: SO(1, 2) the M2-brane

worldvolume and SO(8) the transverse space,

Γt = ǫ⊗γ(9) , Γx = σ1⊗γ(9) , Γy = σ3⊗γ(9) , ΓI = 1⊗γI , I = 1, 2, . . . , 8 . (A.1)

Here γI ’s are the 16×16 gamma matrices in the eight-dimensional Euclidean space and

γ(9) ≡ γ12···8. Clearly the SO(1, 2) projection constraint (2.4) coincides with that of SO(8),

Γtxy = 1 ⊗ γ(9) . (A.2)

This is consistent with the fact that the product of all the eleven-dimensional gamma

matrices leads to the identity Γtxy123···8 = 1.

Now we recall the seven quantities Ei, i = 1, 2, 3 · · · , 7 (2.13). In the above choice of

gamma matrices we have

Ei = 1 ⊗ Ei , P = 1 ⊗ P , (A.3)

where as in (2.13)

E1 = γ8127P , E2 = γ8163P , E3 = γ8246P , E4 = γ8347P ,

E5 = γ8567P , E6 = γ8253P , E7 = γ8154P , P =
1

2
(1 + γ(9)) . (A.4)

The subscript spatial indices of the gamma matrices are organized such that the three

indices after the common 8 are identical to those of the totally anti-symmetric octonionic

structure constants (2.14). It is straightforward to see that Ei forms a representation of

the “square” of the octonions on the eight-dimensional chiral space,

EiEj = δijP + c 2
ijk Ek , Ei ≡ ei ⊗ ei . (A.5)

Since they commute each other, they form a maximal set of the mutually commuting

traceless symmetric and real matrices of the definite chirality γ(9)Ei = Ei. In fact, one can

construct a SO(8) symmetric and real gamma matrix representation which makes all Ei’s

be simultaneously diagonal, utilizing the octonionic structure constants:

γI =







0 ρI

(ρI)
T 0






, ρI(ρJ)T +ρJ(ρI)

T = 2δIJ , γ(9) = γ12345678 =

(

1 0

0 −1

)

. (A.6)

Here ρI , I = 1, 2, . . . , 8 are 8×8 real matrices given by4

ρi = −(ρi)
T =







ci − ni

(ni)
T 0






, i = 1, 2, . . . , 7 , ρ8 = 1 , (A.7)

4In particular, ρi, 1 ≤ i ≤ 7 correspond to the Majorana gamma matrices in Euclidean seven dimensions

ρiρj + ρjρi = −2δij .
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and ci is a 7×7 real matrix whose j, k component is nothing but the octonionic structure

constant cijk (2.14), while ni is a seven-dimensional unit vector of which the jth component

is defined to be δ j
i .

In the above choice of Majorana gamma matrix representation, all the Ei’s and P are

diagonal,

E1 = diag(+1,+1,−1,−1,−1,−1,+1,+1, 0, 0, 0, 0, 0, 0, 0, 0) ,

E2 = diag(+1,−1,+1,−1,−1,+1,−1,+1, 0, 0, 0, 0, 0, 0, 0, 0) ,

E3 = diag(−1,+1,−1,+1,−1,+1,−1,+1, 0, 0, 0, 0, 0, 0, 0, 0) ,

E4 = diag(−1,−1,+1,+1,−1,−1,+1,+1, 0, 0, 0, 0, 0, 0, 0, 0) , (A.8)

E5 = diag(−1,−1,−1,−1,+1,+1,+1,+1, 0, 0, 0, 0, 0, 0, 0, 0) ,

E6 = diag(−1,+1,+1,−1,+1,−1,−1,+1, 0, 0, 0, 0, 0, 0, 0, 0) ,

E7 = diag(+1,−1,−1,+1,+1,−1,−1,+1, 0, 0, 0, 0, 0, 0, 0, 0) ,

P = diag(+1,+1,+1,+1,+1,+1,+1,+1, 0, 0, 0, 0, 0, 0, 0, 0) ,

and the SO(8) triality among 8v, 8+, 8− is apparent as the 8v generators decompose into

the 8+ and 8− generators,

γIJ =

(

ρ[Iρ
T
J ] 0

0 ρT
[IρJ ]

)

. (A.9)

With the identity e8 ≡ 1, the octonion algebra now spells completely:

eIeJ = (ρI)JK eK , I, J,K = 1, 2, . . . , 8 . (A.10)

Finally let us consider a self-dual four-form and contract it with the SO(8) gamma

matrices ΓIJKL, such as Υ4P in (2.10). Clearly utilizing the SO(8) triality, one can diag-

onalize Υ4P to express it as a linear combination of Ei’s. This shows that the canonical

form of a self-dual four-form in eight dimensions indeed takes the form (2.12): namely the

non-vanishing independent components are only those seven which are contracted to Ei’s.

B. SO(2) invariant projection matrix

Here we derive the most general form of the 32 × 32 projection matrices Ω which are

invariant under the Cartan subalgebra SO(2)5 of SO(10), satisfying in addition to the

conditions (2.8),

[Γxy,Ω] = 0 , [Γ12,Ω] = 0 , [Γ34,Ω] = 0 , [Γ56,Ω] = 0 , [Γ78,Ω] = 0 . (B.1)

As (2.17), they assume the general form:

Ω =
[

c + Γxy
(

a1Γ
12 + a2Γ

34 + a3Γ
56 + a4Γ

78
)

+ b1Γ
1234 + b2Γ

1256 + b3Γ
1278

]

P , (B.2)

where c, a1, . . . , b3 are eight a priori unknown real constants which must be determined

by requiring the remaining condition Ω2 = Ω. In particular the number of the preserved

supersymmetries is related to the constant c by

N = TrΩ = 16c . (B.3)
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It is convenient to reparameterize the four constants a1, a2, a3, a4 by four other con-

stants e1, e2, e3, e4

e1 = 2(a1 + a2 + a3 + a4) , e2 = 2(a1 + a2 − a3 − a4) ,

e3 = 2(a1 − a2 + a3 − a4) , e4 = 2(−a1 + a2 + a3 − a4) , (B.4)

and the other four constants c, b1, b2, b3 by another set of four constants f1, f2, f3, f4

f1 = 2c − 1 − 2b1 − 2b2 − 2b3 , f2 = 2c − 1 − 2b1 + 2b2 + 2b3 ,

f3 = 2c − 1 + 2b1 − 2b2 + 2b3 , f4 = 2c − 1 + 2b1 + 2b2 − 2b3 . (B.5)

It follows that

a1 =
1

8
(e1 + e2 + e3 − e4) , a2 =

1

8
(e1 + e2 − e3 + e4) ,

a3 =
1

8
(e1 − e2 + e3 + e4) , a4 =

1

8
(e1 − e2 − e3 − e4) , (B.6)

b1 =
1

8
(−f1 − f2 + f3 + f4) , b2 =

1

8
(−f1 + f2 − f3 + f4) ,

b3 =
1

8
(−f1 + f2 + f3 − f4) , c =

1

8
(f1 + f2 + f3 + f4 + 4) .

Straightforward calculation shows that Ω2 = Ω is equivalent for each a = 1, 2, 3, 4 to

faea = 0 , e2
a = (1 + fa)(1 − fa) not a sum . (B.7)

Hence for each a we have four possible solutions:

ea = 0 , fa = +1 ; ea = 0 , fa = −1 ; ea = +1 , fa = 0 ; ea = −1 , fa = 0 . (B.8)

Consequently from (B.3) and (B.6), the possible values of c are 0, 1
8 , 2

8 , 3
8 , 4

8 , 5
8 , 6

8 , 7
8 , 1,

so that the number of the preserved supersymmetries N is an even number between zero

and sixteen. The basic building blocks of all the possible projection matrices are those of

N = 2 given by

Ω =
1

8

[

1+Γxy
(

β1Γ
12+β2Γ

34+β3Γ
56+β1β2β3Γ

78
)

−β1β2Γ
1234−β3β1Γ

1256−β2β3Γ
1278

]

P

=
1

8
(1 + β1Γ

xy12)(1 + β2Γ
xy34)(1 + β3Γ

xy56)P , (B.9)

where β1, β2, β3 are three independent signs,

β2
1 = β2

2 = β2
3 = 1 . (B.10)

There are eight possible N = 2 projection matrices which are orthogonal to each other.

By summing k of them, all the other generic projection matrices preserving N = 2k

supersymmetries can be obtained.
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